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Note

Determination of Large-Order Spherical Coulomb Functions with an
Argument Lying between the Origin and the Common Point of Inflection

1. FUNDAMENTAL EQUATIONS

The spherical Coulomb functions satisfy the radial equation (see Ref. [1])

A R )

- ! ; )] uy(y, p) = 0. (LD

They are defined in the domain 0 < p << -~ 0, -~ <y << +oc for any non-
negative integer order: L == 0, 1,....
Write, in the neighbourhood of the origin,

u; = oP° exp(ao): (12)

¢, being independent of p, and introduce (1.2) into Eq. (1.1). One has

doe,\? . d?a, . 20 da, 2y .
('zzp) Tdr T e dp T 0 (1.3)
if & is one of the roots of the indicial equation for (1.1),
o g — L(L-+1)=0,
Le..
o, =L +1, oy = — L. (1.4)
Thus,
Fily, p) — ¢, p°t exp(x,,), Gy, p) = Copp™ expla,,), (1.5a)

where, according to the usual notation, F,(y, p) and G,(y, p) are respectively the
reguiar and the irregular spherical Coulomb functions of order L.

When p — 0, or L — o0, i.c., when |(20)/p | > 1, we can neglect (dw,/dp)? in (1.3)
and obtain the approximate solution

da,

~Y _ pP__
=~ 7 ) (1.6)
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Thus, considering (1.4), (1.52) and (1.6),

Fi(y, p) 5~ 0 1PL+1 [1 + 7 T, + 1 Pt ] (1.7a)
. I [1+2yp10gp+ “.], LZO:
L(V: P) T—TO_) cO'g (;) [1 [ P —]— ] L == 0. (17b)

The limit for Gy(y, p) is obtained directly from (1.3) by putting ¢ = ¢, = 0.
The limits (1.7) show (see Refs. [1], [2]) that the coefficients ¢;, and ¢, are given by

L 2/ o2)1/2 :
o I_.[s=1 (1 + '}’ /S) X ( 2779’ 1 )1 2’ . 1 (1 Sb)

C0 =TT QL F D o — QLT Ve,

The finite product in ¢, is taken equal to 1 for L = 0.
A better approximation do,%/dp to do,/dp can now be found. By differentiation of
(1.6) with respect to p, one has

%"5 z(‘iz)" Z_)/p (1.8)

and, eliminating d?x,/dp? between (1.3) and (1.8),

do,? \%2 20+ 1 du,®
%)

vy 20+ 1
dp +l—~_

S L= (1.9)

The solution of Eq. (1.9) we are interested in, is, evidently, the one which goes into
(1.6) when L — oo (or p — 0):

d5;02_0+2 g [1+%,105_%—(05_%)T?- (L.10)

The forms (1.5) for Fi(y, p) and G;(y, p) are valid in an interval to the right of the
origin where these functions are both positive or, what is the same thing, where «,. ,
i = 1, 2 and their derivatives are real functions of p. We find from (1.10) that such an
interval is given for o;, i = 1, 2, by

0 <p<pi, pi=(0s+ % X{ylo;+ (=D yfo* + 1%, i=1,2
(1.1D)
The p; , i = 1, 2 are close to the common point of inflection of F;(y, p) and G.(y, p)
(see Eq. (1.1)):
po =y + y* -+ L(L + D} (1.12)

(all the other inflection points of these functions coincide with the zeros of F;(y, p)
and G.(y, p), which interlace according to a well-known theorem).
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Egs. (1.11) and (1.12) imply

o~
[
-,
(9%
Nrawnt

P2 << Po < P1-

Also, when L — 00, p; = p, = py — 0.

Obviously, the approximation (1.10) to du,/dp is good only for values of p away
from py. This does not matter in the calculations that will foliow, since they are
performed for values of p smaller than p, .

Now we shall obtain solutions in series for o, and du,/dp. Let

daa S

Z anp”. (1.14

Substitute (1.14) into Eq. (1.3) and equate to zero the algebric sums of the {a,}
belonging to the same p”. One has

g =vylo, a =—(1+adQ2+ 1), (1.15a)

n—1
a, (20 +n) -+ Y =0, n=23... (1.155)

k=0

Also
w© a .
g = n_ e, (116}
P

The integration constant is zero in accordance with Egs. (1.7).

The developments (1.14) and (1.16) can only be used for ¢ = o, = L + 1. In the
case of ¢ = g, = —L, the coefficient of a(y) in (1.15b) vanishes and the recurrence
formula breaks down (for y = 0, however, auy = 0, £ = 0, 1,... and Egs. (1.15)
are still valid for o = o, (see Ref. [3])).

do,o/dp is determined in Section 3 by iteration.

2. CONVERGENCE OF THE SERIES FOR %, AND d(x(,l/dp

Expand by means of the binomial series, do? /dp defined in (1.10). We find
dog Jdp = 3.n_ a,°p", where the {a,% can be obtained directly from Eq. (1.9) in the
same way as the {a,} were derived from Eq. (1.3):

n—1
al=a,, n=12; a'Qs,+1)+ Z ald . . =0, n=23,..(2.1)

Now, as we shall prove below,

lay| <l\a®l, k=0,1,.. (2.2)



296 P. DE A. P. MARTINS

Therefore,

<o

;,-Z:o lap | p* < ) |l o (2.3)

But the expansion for dagl/dp (as the binomial series itself) converges absolutely and
uniformly in any.interval of the variable p where the inequalities

2y _p p__\?
— =7 . — 2
t< b (01+_%_)<+1 2.4)
are both satisfied. Conditions (2.4) are fulfilled for any p belonging to the interval
0 < p < p, (see (1.11)) if o; > .

Thus (see Ref. [4; p. 399]), by (2.3), the series (1.14) and (1.16) for docal/dp and for
a,. also converge uniformly and absolutely in 0 < p << py if

oy > Y. (2.5)

Consider now the proof of relations (2.2). From Egs. (1.15) for ¢ = oy and (2.1)
it can be shown by induction that

E+1 k+1
a) = — (- L) et a0 = —(—71r) el k=0, L.
Ly Ly
(2.6)
Suppose now that (2.2) are true for k = 0, 1,..., n — 1 with > 1 and introduce (2.6)
respectively into (1.15b) and (2.1). One has, since 20; + 1 << 20y +nforn > 1,

s & o1 aaa | <10l

ol = 5

Relations (2.2), true for k = 0, I (see (2.1)), can now be established by mathematical
induction.

TABLE 1
L Y P dog fdp n &g,
10 0.5 1 0.19755301 x 102 7 0.23706501 x 101t
10 5 1 0.40390207 9 0.42893424
30 5 i0 0.25552066 x 10~ 15 0.81562269
Note. The truncated series dos /dp = (1/p) Tu o AL and a = _2_; Ai/(k ++ 1) are used in the .

determination of dolgl/dp and g, . The 4;, = aypo*t, k = 0, 1, wn— 1 are obtained from A, and A,
by recurrence (see (1.15b)) w1th o=L+1:A4J2(L+ 1)+ k] + _dH, P A; sAr—1-; = 0. The column
headed by » gives the number of terms kept in the series for data-l/dp which satisfy the condition .
Max(l 4,1 |, | 4 ) > p X 1078, so that F(y, p) can be calculated with 8 exact significant figures.
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Table 1 shows duo, /dp and o, for different L, y and p. In the examples given,

L>»p, L>{vy|so that the conditions 0 < p < p,and o, > v are always satisfied.

The familiar, stable three-term recurrence formula (see Refs. {1}, [2]) is used in the
etermination of F(y, p) from F,(y, p) in Table I1.

TABLE II
L Y P Fily, p) Fyo(v, p)
19 0.5 1 0.33554924 x 10-1° 0.51660150
10 5 1 0.13750509 x 10— 0.20413012 x 10
30 5 10 0.32745345 x 107+ 0.91794492

Note. Fi(y, p) is obtained from (1.5). Fz_,(y, p) (necessary to the calculation of Fy(y, p) by re-
currence) is obtained from [1 + (/L2 Fr_ = [2L + 1)/p + v/L + dxa 'dp] Fy , derived from
(1.5) and [1 + (y/LY1'2 Fry = (Ljp + viL + d'dp)Fy. (see Ref. [I]).

3. DETERMINATION OF dx,/dp BY AN ITERATIVE METHOD

To simplify the notation, represent by [, f”,..., f ™ the first # derivatives of any
function f of p and write

- _ do, ;
b = Fl 3.1
In accordance with these definitions, Eq. (1.3) becomes
a[:(bb)—szrb’—l— b+1———p~::0, (3.2)
The first approximation b, to b is taken equal to the function (1.10), i.e.,
dag® -
by = ;P . (3.3}
Suppose now that b, is a better approximation to b and write
h=5b—b,. 3.4)

From (1.8), &' =~ h/p, and (b, b') =~ (b, -~ h, b, -- h/p) or, expanding by its
Taylor’s series up to terms of first order in 4,

9B, ) = b, ) + - (S8 )., ( ), ) 3.5

where the subscript (1) means that the partial derivatives are taken at point (&, , 5,,).
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Since b is a solution of Eq. (3.2), (b, b') = 0 in (3.5). The right-hand side of (3.5),
however, is not necessarily zero, though we can make it vanish by substituting for b
in (3.4) an appropriate new function b, ., of p. We have, then,

(b, , by)
by = bo — = (3.6a)
( z[)f_)(z'z)J‘_ll?(;ll;L;)('n)

[}

|

b

or, by (3.2),

buy = —3bs — b> — bjp + 1 —2y/p)/lb, + (o + Dlp),  n=0,1,...
(3.6b)

Eq. (3.3) with Egs. (3.6b) establish an iterative process for the determination of
b (=du,/dp).

Note that the calculation of &, requires the first # derivatives of b, , the first n — 1
derivatives of b, ,..., the first derivative of b,_; . These functions are relatively simple
to derive from Egs. (3.3) and (3.6b) for # small. But it is better to find by directly from
Eq. (1.9):

by = (by — v/9)/lp + (p°b0)/(o + D] 3.7

The b™, m = 2, 3,... are obtained successively from (3.7).

Consider, now, the convergence of the iterative process. Subtract (b, ") =0
from (b, , b;,) in the numerator of (3.6a) and develop (b, b") = (b, + h, b, + K)
(see (3.4)) by its Taylor’s series. We find

b —bppy = =3 — b)* + (&' — by) — (b — b,)/p)/[bs + (e + ip]l. (3.8)

Eq. (3.8) shows that the iterative process described above is a first order one. Thus,
if b, is an approximation to b, we have b, — b, = M(b, — by_y), by — b,_; =
M(b,_;, — b,_,) or, eliminating M,

bnbn—z _ b?b——l
bn - 2bn—1 + bn—-2 )

b, = 3.9
Eq. (3.9) represents Aitken’s 82-process and can be used to accelerate the convergence
of the {,} (see Ref. [2; p. I8]).

Table III illustrates the iterative process for o = g, = —L. The function b, is
obtained from (3.9) with » = 3.

TABLE III
L Y P bo . b3 ba
10 0.5 1 0.26319435 x 10~ 0.26336925 x 10~ 0.26337165 x 10*
10 5 1 —0.43730346 —0.43744757 ~0.43744757

30 5 10 0.28262126 x 10~* 0.28319918 x 10~ 0.28320015 x 10~
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Finally, we obtain G;(y, p) from the Wronskian for this function and for F;{y, p)
(see Refs. [1, 2]) and from Egs. (1.5). We find

2L+ 1 dx, do,

FiGr (g = ) =1 (3.10)

The examples shown in Table IV fulfill the conditions 0 << p << p, (see (1.11) and
L+ 1>y (see (2.5)). No attempt is made to obtain Gy, p) from Gy, p} by
recurrence because such a “backward” process is numerically unstable.

TABLE IV
y P L Gy, p) L Gily, p)
0.5 1 10 0.14191819 x 10 4 0.22443 x 108
5 1 10 0.33296743 x 10 8 0.11777 x 18
5 10 30 0.50065701 x 10 13 0.82766 x 10

Note. Both columns headed by Gy(y, p) are obtained from Eq. (3.10) taking doz,,z/dp ~b,, given
by (3.9) with # = 3, The convergence of the iteration is not so good when L becomes closer o p
and | y . That is why the 2nd column for G(y, p) shows only 5 exact significant figures.

All the calculations were performed in the Coimbra University Sigma 5 Xerox
computer using a double-precision FORTRAN-IV programme.
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